

Fig. 2. PLUTO (Motherwell, 1972) drawing of the packing of molecules in the unit cell.
molecule related by $2-x, \frac{1}{2}+y, \frac{1}{2}-z$ is almost parallel to the benzene ring with transformed $\mathrm{C}(12) 3.693$ (7) \AA above a point approximately midway between $\mathrm{C}(5)$ and $\mathrm{C}(7)$. The operation $2-x,-\frac{1}{2}+y, \frac{1}{2}-z$ produces
contacts on the opposite side of the ring between $\mathrm{C}(6)$ and transformed $\mathrm{C}(4)$ of $3.470(5) \AA$, and between $\mathrm{C}(8 A)$ and transformed $\mathrm{O}(5)$ of $3.628(5) \dot{\AA}$. Thus the 'L-shaped' molecules can fill space efficiently.

References

Crichton, E. G. \& Waterman. P. G. (1978). Phytochemistry, 17. 1783-1786.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Crist. A27. 368-376.
Jones, R. N., Forbes. W. F. \& Mueller, W. A. (1957). Can. J. Chem. 35, 504-514.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Liebich, B. W. (1979). Acta Cryst. B35. 1186-1190.
Motherwell, W. D. S. (1972). PLUTO. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Pouchert, C. J. (1970). The Aldrich Library of Infrared Spectra, p. 656. Milwaukee: Aldrich Chemical Co.

Schlemper, E. O.. Hussain. M. S. \& Ross. F. (1981). Acta Crı'st. A37. C-96.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Tanimoto, Y.. Kobayashi. H.. Nagakura, S. \& Saito, Y. (1973). Acta Cr!'st. B29, 1822-1826.
Williams, D. H. \& Fleming, I. (1980). In Spectroscopic Methods in Organic Chemistry, 3rd ed. New York: McGraw-Hill.

Acta Cryst. (1983). C39, 502-504

Structure of 2-Amino-3,5-dibromo- N -cyclohexyl- N -methylbenzenemethanamine-1,2-Benzisothiazol-3(2H)-one 1,1-Dioxide (1:1), $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$

By Nobuyuki Shimizu and Sadao Nishigaki
Pharmaceutical Institute, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160, Japan

(Received 20 October 1982; accepted 20 December 1982)

Abstract

M_{r}=559 \cdot 3\), orthorhombic, Pbca, $a=$ 15.374 (2), $\quad b=25.330$ (4), $\quad c=11.630$ (13) $\AA, \quad U=$ $4529.0 \AA^{3}, \quad Z=8, \quad D_{x}=1.641, \quad D_{m}=1.632 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Mo} K \alpha)=0.71069 \AA \AA, \quad \mu=4.03 \mathrm{~mm}^{-1}, \quad F(000)=$ 2256. Final $R=0.095$ for 2577 observed reflections. 2-Amino-3,5-dibromo- N-cyclohexyl- N-methylbenzenemethanamine (ABCMBMA) and 1,2-benzisothiazol$3(2 \mathrm{H})$-one 1,1-dioxide (o-sulfobenzoimide, OSBI) are alternately linked by hydrogen bonds $[\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2), \mathrm{N}(2)-\mathrm{H} \cdots \mathrm{N}(3)]$ and a permanent dipole-induced-dipole interaction to form an infinite chain in the a direction.

Introduction. ABCMBMA is an expectorant drug and OSBI is an artificial sweetener. This investigation was undertaken as part of a series of our structural studies of molecular complexes between different drugs.

0108-2701/83/040502-03\$01.50

Experimental. Suitable crystals (m.p. 459 K) for diffraction analysis grown via slow evaporation of an ethanol solution of equimolar quantities of ABCMBMA and OSBI, D_{m} measured by flotation in $\mathrm{CCl}_{4} / \mathrm{CHBr}_{3}$, crystal $0.2 \times 0.3 \times 0.4 \mathrm{~mm}$; preliminary Weissenberg photographs revealed systematic absences $0 k l$ for $k=2 n+1, h 0 l$ for $l=2 n+1, h k 0$ for $h=2 n+1$, and indicated the centrosymmetric orthorhombic space group Pbca (No. 61); cell dimensions derived from least-squares treatment of the setting angles for 18 reflections, Rigaku four-circle diffractometer, Mo $K \alpha$ radiation, graphite monochromator, no correction made for absorption; one independent octant of data out to $2 \theta=55^{\circ}$ collected using $\omega-2 \theta$ scan technique; three reference reflections (measured periodically) showed no significant variation in their intensities; 2577 reflections considered observed $\left[F_{o} \geq 3 \sigma\left(F_{o}\right)\right]$; structure
solved by heavy-atom method, Br positions deduced from a three-dimensional Patterson synthesis, remaining atoms located in a subsequent Fourier synthesis; structure refined by full-matrix least-squares calculations (against F_{0}, unit weight) with parameters grouped in two blocks including anisotropic temperature factors for the non- H atoms to yield $R=$ 0.095 ; positions of H atoms derived from a D synthesis and from geometrical calculations, and included as fixed contributions with $B_{\text {iso }}$'s of their parent atoms; maximum ratio of the last shift in any atomic parameter to its e.s.d. was $0 \cdot 30$; final difference synthesis showed no anomalies; atomic scattering factors and anomalous-dispersion correction terms for Br and S atoms taken from International Tables for X-ray Crystallography (1974); calculations and drawing of figures carried out on a HITAC M-200H computer at the Computer Center of the University of Tokyo, using programs UNICS (1967) and ORTEP (Johnson, 1965).

Discussion. Final atomic coordinates are listed in Table 1.*

* Lists of structure factors, anisotropic thermal parameters of the non- H atoms, positional parameters of the H atoms, Tables 3 and 4 and Fig. 3 have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38298 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Positional parameters and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

Fig. 1 shows the molecular structure with the numbering of the atoms and the bond distances, Table 2 gives the bond angles. Table $3 \dagger$ contains the best planes and deviations of the atoms from them.

So far as we know, this analysis is the first X-ray crystallographic investigation of the ABCMBMA part. In the ABCMBMA moiety, the bond lengths $C(2)-C(3) \quad 1.351(21)$ and $C(5)-C(6) 1.307(23) \AA$ seem rather short for a normal C...C bond $1.397 \AA$, and observed angles $\operatorname{Br}(1)-\mathrm{C}(3)-\mathrm{C}(4) 114.6(11)^{\circ}$ and $\operatorname{Br}(2)-\mathrm{C}(5)-\mathrm{C}(4) \quad 114 \cdot 1(12)^{\circ}$ are significantly different from 120°.
$\mathrm{N}(2)$ receives the H atom which has been released from $N(3)$ of OSBI.

> † See previous footnote.

Fig. 1. Molecular structure and bond lengths (\dot{A}) for the title compound. E.s.d.'s are $0.011-0.030$ A.

Table 2. Bond angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

ABCMBMA			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.7 (14)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.6(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	124.5 (13)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	111.4 (13)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	116.7 (13)	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	112.4 (11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.5 (14)	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)$	114.3 (12)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	120.8 (14)	$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(9)$	110.4 (12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	120.7 (14)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	111.6 (13)
$\mathrm{Br}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	121.4 (11)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(14)$	112.5 (13)
$\mathrm{Br}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	114.6 (11)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	108.1 (14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	124.0 (14)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.4 (16)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	114.4 (15)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	114.0(18)
$\mathrm{Br}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	114.1 (12)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$110.7(18)$
$\mathrm{Br}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	122.4 (12)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	114.6 (17)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	123.6 (14)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	110.5 (14)
OSBI			
$\mathrm{N}(3)-\mathrm{S}-\mathrm{O}(1)$	112.4 (7)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	116.8 (15)
$\mathrm{N}(3)-\mathrm{S}-\mathrm{O}(2)$	109.7 (7)	S-C(19)-C(18)	$130 \cdot 5$ (11)
$\mathrm{N}(3)-\mathrm{S}-\mathrm{C}(19)$	96.7 (7)	S-C(19)-C (20)	108.1 (10)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	114.4 (8)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	121.3 (14)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(19)$	113.4 (8)	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	120.4 (14)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(19)$	108.9 (7)	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	129.6 (14)
$\mathrm{S}-\mathrm{N}(3)-\mathrm{C}(21)$	112.0 (10)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	110.0 (13)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	120.9 (16)	$\mathrm{N}(3)-\mathrm{C}(21)-\mathrm{C}(20)$	113.0 (11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	116.8 (17)	$\mathrm{N}(3)-\mathrm{C}(21)-\mathrm{O}(3)$	126.1(13)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	123.8 (18)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{O}(3)$	120.9 (14)

Some selected torsion angles are reported in Table 4.* The cyclohexyl ring of ABCMBMA has the chair conformation. Torsion angles $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(2)$ $\left(4_{1}\right), \mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)\left(4_{2}\right)$ and $\mathrm{C}(7)-\mathrm{N}(2)-$ $C(9)-C(10) \quad\left(43^{2}\right)$ are $97.7(17), \quad 158.9(8)$ and $54.3(14)^{\circ}$, respectively. In order to get the information about the freedom of rotation with regard to the torsion angles ψ_{1} and ψ_{2}, conformational analysis was performed.

Since it seems that the two Br atoms have little effect on the torsion angles ψ_{1} and ψ_{2}, the structure in which Br atoms were replaced by H atoms was used for the potential-energy calculations. ψ_{3} was kept fixed at the experimental value of 54.3°. Two energy-minimum regions exist in Fig. 2.

The observed conformation (\oplus) lies in the left-hand valley. In the OSBI moiety, the bond lengths $S-N(3)$ and $\mathrm{N}(3)-\mathrm{C}(21)$, and the angle $\mathrm{S}-\mathrm{N}(3)-\mathrm{C}(21)$ are $1.615(11), 1.345(19) \AA$ and $112.0(10)^{\circ}$, respectively. These values are similar to those found in our previous report: 2,4-diamino-5-(3,4,5-trimethoxyben-zyl)pyrimidine(DTMBP)-OSBI (1:1) monohydrate [1.618 (5), $1.346(7) \AA$ and $111.2(4)^{\circ}$, Shimizu \& Nishigaki, 1982], and are appreciably different from $1.663(2), 1.375(2) \AA$ and $115.0(2)^{\circ}$ found by Bart (1968) and 1.663 (4), 1.369 (5) \AA and $115 \cdot 1^{\circ}$ found by Okaya (1969) for OSBI not forming a molecular complex.

These results demonstrate that the H has been released from $\mathrm{N}(3)$.

> *See deposition footnote.

Fig. 2. The conformational-energy map. The contour levels are quantified in nominal units of $\mathrm{kcal} \mathrm{mol}^{-1}\left(1 \mathrm{kcal} \mathrm{mol}^{-1} \equiv 4.2 \mathrm{~kJ}\right.$ mol^{-1}). The observed conformation is marked by a cross.

Fig. 4. Hydrogen-bonding diagram. Distances in A. $A:$ ABCMBMA; B : OSBI.

Fig. 3* depicts the unit cell of the title compound. Fig. 4 illustrates the hydrogen-bonding scheme.

In the present crystal, ABCMBMA and OSBI are alternately linked to form an endless chain $(-A-B-C-D-)$ by two hydrogen bonds $\left[\mathrm{N}(1) \cdots \mathrm{O}(2)=2.97(2), \mathrm{N}\left(2^{\mathrm{i}}\right) \cdots \mathrm{N}(3)=2.88\right.$ (2) \AA; (i) $\left.\frac{1}{2}+x, \frac{1}{2}-y,-z\right]$. The dihedral angle between the phenyl ring $[C(1)-C(6), A]$ and the OSBI (B) plane is $14 \cdot 2(1)^{\circ}$.
$O(3)$ of OSBI in our previous structure (Shimizu \& Nishigaki, 1982) accepts two hydrogen bonds from DTMBP. In the present crystal, however, it is interesting to note that the $\mathrm{O}(3)$ of OSBI does not participate in any hydrogen bonding. It is situated over the benzene ring of the partner molecule ABCMBMA, and a permanent dipole-induced-dipole interaction exists between this carbonyl $\mathrm{C}(21)=\mathrm{O}(3)$ of OSBI and the benzene ring of $\mathrm{ABCMBMA}\left[\stackrel{\mathrm{O}}{\mathrm{C}} \cdot \mathrm{i} \cdot \mathrm{O}\right.$, (ii) $-\frac{1}{2}+x$, $\frac{1}{2}-y, \quad-z: \quad O(3) \cdots$ benzene plane, $\quad 3 \cdot 15(1) \AA$; $\mathrm{C}(21) \ldots$ benzene plane, 3.24 (2) \AA]. There are also two weak electrostatic attractions between slightly negatively charged Br atoms and the positively charged H atoms $\left[\operatorname{Br}(1) \cdots \mathrm{H}\left(15^{\mathrm{iii}}\right)-\mathrm{C}(15)=2.83 \AA\right.$, (iii) $\frac{3}{2}-x$, $-\frac{1}{2}+y, z ; \operatorname{Br}(2) \cdots \mathrm{H}\left(101^{\mathrm{ii}}\right)-\mathrm{C}(10)=2.96 \AA$, (ii) $-\frac{1}{2}+x$, $\left.\frac{1}{2}-y,-z\right]$.

We thank Professor Kenji Osaki and Dr Tooru Taga of Kyoto University for their useful suggestions during this project.

* See deposition footnote.

References

Bart, J. C. J. (1968). J. Chem. Soc. B, pp. 376-382.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Okaya, Y. (1969). Acta Cryst. B25, 2257-2263.
Shimizu, N. \& Nishigaki, S. (1982). Acta Cryst. B38, 1834-1836.
UNICS (1967). The Universal Crystallographic Computation Program System, edited by T. Sakurai. Tokyo: The Crystallographic Society of Japan.

